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Optimal Control of a Brownian Motion

by

Herma n Chernoff
and

Albert John Petkau

1. Introduction

In a recent paper , Rath [91 characterizes the solution

of an optimal stochastic control problem where the control ler

can switch from either one of two modes to the other and in

each mode, a diffusion process z(t) evolves according to a

reflected Brownian motion with drift and diffusion parameters

determined by the mode. In this problem, one possible

application of which concerns the queue length z(t) of

operations waiting to be performed in a computer , there are

different costs per unit time for each mode of operation,

• there are switching costs for changing modes, and there is

a linear holding cost per unit time , c0Z(t) . The object

is to determine a policy which minimizes the long run average

cost or more precisely the infinite horizon expected aver~~~

cost. Rath demonstrates that the optimal policy among a l l

stationary policies consists of switching at two key levels

of the process. The proof involves approximating the problem

by a sequence of discrete time discrete space random walk

problems, solving the latter and going to the limit.

In this paper we consider a generalization of this
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problem . Our objective is to demonstrate that the general

potential  function or value difference approach developed by

Bather (1,2,31 and subsequently used by various authors [5 ,6,7,8,11]

enables one to work with the diffusion process directly.

This approach is more analytic and thus has potential ad—

vantages in adding general insights on the behavior of

solution to the original problem and its generalizations.

• It also lends itself easily to numerical techniques.

The major drawbacks in this approach are that in com-

plicated versions of the problem , e.g. those involving more

than two modes , the analytic approach becomes cumbersome . Finally

while it is easy to show that the candidate solutions which satisfy

the optinzality conditions are optimal in the class of all

stationary procedures , there is difficulty , due to lack of

compactness in demonstrating that such a candidate is optimal

among all possibly non—stationary procedures.

2. The Model

Informall y, we assume that there are k modes. At

any given time we may switch instantaneously from mode i

to mode j  at a cost of > 0 . While we are in mode i ,

the cost is c~ per unit  time . Also the queue length Z ( t )
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changes according to reflected Brownian motion with mean drift

and variance a1
2 per unit time. The holding cost is

h[Z(t)] per unit time.

• More formally , for i = l,2,••~~,k let W
~
(t) be a

Brownian motion with W~ (0) 0 , EW~ (t) = ii1t , and

E { [W
~
(t+s)_W

~
(s))2IW~

(s)} = a1
2t for all s,t > 0 . If

mode i~ is selected for the ~th time period (t~_1,t~ ]

where 0 = t0 < t1 < ... 
, the basic diffusion process

originating at y0 is

j’—l
Y(t) = + [w~• 

(t~) .~w1• (t~...1) 1 + Wi ., 
(t)_W ~~ (t~ ‘ l ~

t .I  < t < t .
—

Since we wish to represent a queue length which cannot go

below 0 , the description of the current state

X(t) (i(t),Z(t)) should contain the level Z(t) of the

reflected controlled process where

Z(t) = Y(t) — min (0,Y(s) ;0< s<t)

as well as the current mode i ( t )  = i . if t. < t < t .J J— l — .1
If mode i is in continuous use during the t ime interval

(s,t] , t > s , a cost g iven by

— 3 —
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f  {c~~+h [z.(t’. 1}dt’

is incurred. We shall assume that h(z) = o(e az ) for all

a > 0 as z -, ~ . With no loss of generality we may assume

h (O) = 0 and K. . + K. . > K. . . The model with
— 11, 13

k = 2 modes and h ( z )  c0z , c0 > 0 corresponds exactly

to the case corsidered by Rath. We shall restrict ourselves

to the case of 2 modes after first discussing the relatively

simple case of k = 1 mode where there is no control problem.

• It is desired to select a policy which will minimize

u r n  t~~E{C(x01 0~t)}• t-,~

where C ( x ,s , t) represents the total cost incurred over the

time interval [s ,t) when the state at time s is X(s) = x

This problem has a stationary or time—homogeneous character

which suggests that an optimal strategy should consist of de-

composing the set of possible current states x = (i , z) into

subsets C ,1 = {(i ~ z ) : zcC j i }  of continuation States where

one remains in mode i and C~ . = {( i i z ) : z C. .} of switchin21,)  1,)

states where one switches from mode i to mode j , if

4
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j  for i , j  = l , 2 ,~~• • ,k . There is some literature [4,10]

which describes conditions under which there are optimal policies

which are stationary . We shall confine our attention to

such policies and later comment briefly on the more general

question when the “good” policies we select are optimal among

all pol icies according to our long run expected average cost

criterion.

The Rath solution for the linear cost function consists

of (a ,b) switching policies with 0<a<b< cx’ where one switches

• from i = 1 to i = 2 if z > b and one switches from i = 2 to i = 1

if z < a . Thus C11 = (0,b), C12 = [b ,~~) , C 21 = [O ,a]

and C22 = (a , co) . For simplicity we shall confine our

attention to those stationary policies where (1) each ~~~

consists of a finite number of non-degenerate intervals;

(2) ~~~ is an open subset of [0,~~) (0 is regarded as an

inner point); and (3) ~~~ C C~~ . We shall call such

stationary policies regular.

3. The Potential Function

The basic advantage of dealing wi th stationary policies

is that the state X ( t )  becomes a Markov Process when such

a policy is applied . The stationary distribution which de-

rives from such Markov Processes provides an alternative basis

for the proof of the existence of the analytic tool, the potential

— 5 —
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func tion , which we introduce under the heuristic assumption

that for any stationary policy with finite long run expected

average cost y

(3.1) E~C(x,t,T)} = y (T—t) + v(x) + oil) as T +

Then the function v(x) = v (i,z) = v1(z) , the potential

function provides the relative disadvantage of the initial

state x = (i ,z) compared with any other state x ’ = (i’ ,z’)

(In this paper we shall leave v aetermined up to an unknown

constant which will not be required and whose calculation is

more di f f icult than the analysis we require. )

Suppose now that z ~ 0 is a point of ~~ . Then the

following backward induction argument demonstrates that

(3.2) ~~v!(z) + ~~
. a~

2v ’ ? ( z )  + c~~÷h(z) = y for zcC .~ , z # 0

The argument is that

E {C ( ( i ,z ) , t—dt ,T ) ) }  ~ [c~
+ h ( z ) ] d t + E ( C ( ( i , z+d~ ) , t ,T ) ) }  + o(dt)

— 6 —
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where dZ(t) = dW
~
(t) has mean ~ .dt and variance a.2dt

Substituting in (3.1), expanding v1(z+dZ) about z , and

neglecting terms of order o(dt) , Equation (3.2) follows.

Equation (3.2) may be interpreted as expressing the overall

cost rate y as the sum of the current cost rate c~ + h(z)

plus one due to the expected movement of the diffusion process.

If z = 0cC
~1~ 

, the reflected nature of the process

leads to

( 3 . 3 )  v~’ ( 0 )  = 0 for 0 cC ..

since dZ = O~~(dt)
1”2 

. For switching states we have

(3.4) v1(z) = K.. + v.(z) for zeC .. , j ~ i

Finally the condition h(z) = o(eaz ) as z -
~ for

a > 0 implies

(3 .5)  v1(z)  = o(eaz) as z -‘~ for a > 0 , i = l,2,.~~•k

so long as the policy does not permit z to d r i f t  of f to .

The heuristic introduction (3.1) to the potential function

can be replaced by a more precise and rigorous result which

— 7 —
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can be expressed in terms of the cost D of a “game” starting

in state x at time t and terminating at time T > t with

a terminal cost of v [X(T)] . This is presented below as

follows :

If v satisfies (3.2) — (3.5) for a regular policy, then

(3.6) D(x,t,T) E {C ( x ,t,T)} + E[v[X(T)]~~X(t)=x} = y (T—t) +v(x)

can be established by a “backward induction” argument on t

4. Solutions of the differential equation and applications.

It is instructive to see what (3.2), (3.3), and (3.5)

imply in the one mode case where there is no optimal control

problem . Here we may as well drop the subscript i . A

solution f-(z) of the differential equation (3.2) has the form

(4.1) f’(z) ~e
2 (0 2

~~ +
1—c

— h ( ~~) 0 2 1’
~~~~~ 

(z
~ w) d for ~ ~ 0

If ~i > 0 , our process drifts off to ~“ and for h ( z )  ~ w

as z ~~‘ , we would have y = , and this solution of the

di f ferent ia l  equation would be irrelevant for the one mode

— 8 —  
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problem . On the other hand it will be useful later for the

more general control problem , as will be the solution of (3.2)

for the case ~ = 0 . If ~ < 0 an alternate representation

of the solution of (3.2) is

(4.2) f’(z) = ~*e
_2(U/o2)z +~~~~ + ~~~ f h(w)e

_ 2 )
~~~~~~dw

for l J <  0 .

Finally if ~i = 0 , the solution of (3.2) is

** V —c ’z 2 f~• (4.3) f’(z) = ~~ + ‘~~ 

2 
— 

~~ ~I h(w)dw for ji = 0
a a

The condition (3.3) leads to cz = 0 in ( 4 . 1) .  On the

*
other hand if p < 0 and (3.5) applies, we have c~ = 0

in (4.2). These two “boundary ” conditions imply

(4.4) y = c + I

where

(4.5) I ~~~ 
f

h(w)e2~~~~~~~ dw p < 0

— 9 —
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In the special case where h(z) = c0z , the expressions

in equation (4.1) — (4.5) are easily evaluated . Thus , in the

one mode case y =~~~ for ~i > 0 and y = c + I for

< 0 where

• 
* 2

• (4.5)’ I = I ~—c 0a /2p for p < 0

The solution of (3.2) may be expressed by

(4.1)’ f’(z) = ~~~ [y_ (c+I *)] - + &e
_2 /02

~~ •f 
~ Q

and

** 2 (  —c) C
0 2(4.3)’ f’ (z) = a + — 2 Z — —
~~

- z if p = 0

Note that the condition f’ (0) = 0 in (4.1) ‘ implies

*a = - (y-(c+I )]/p . Thus in the one mode case with p < 0

( 4 . 4 )  ‘ y = c — c0a 2/2p

f’(z) = — c0z/p and except for an unknown constant v(z) —c 0z
2/2p

To illustrate the evaluaticn of z and I .’ for a tw’ mode
1

problem, suppose that C11 = (a1,a2) and C22 = [O ,b1)u (b2,~~)

— 10 —
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where 0 < a1 < b1 
< b~ 

< a2 and p2 < 0 . Then

vj and v~ involve 4 unknown constants . These are

• ‘y and a21 (a for mode 2 with z < b
1
) , a22 (a for

modr’ 2 with z > b2) and a1 (a for mode 1 with a1 z < a2)

On the other hand v~ (O) = 0 implies a 21 = 0 , and
1-c Iaz . . 2 2 . *v2 (z) = o(e ) implies a22 

— + = 0 (i.e., a22 = 0).

Furthermore, the conditions v1(a . )  = v2(a.) + K12 and

v (b.) = v(b
1
) + K

21 , 
imply that

= K21 + K12 
for j = 1,2 which imposes

two more conditions on the four constants. These lead to

the de termination of ‘
~ and v ’ ( z )  on the Continuation sets,

On the switching states cj~ v.(z) = v.(z) + K..

From all of this calculus, v is determined up to an unknown

additive constant , the determination of which , even in the one

mode problem , requires analysis of the stationary distribution

of the Markov Process governing the state (i,z) as a function

of time.

5. Optimality Conditions

Two very natural optimality conditions on the policy are

(5.1) v~ (z) < K.. + v.(z) for zcC.~

and

— 11 —

_ _ _  • -~~.-~~~~~~~~~~• • -  •- ~~~~~
• -

~~~~
. .



- .— - •._ _ -~~~~~~~~ 
•

(5.2) c~ + u~ v~~(z) + ~~~ v’!(z) < c . + p . v~~( z )  + .4—. v ; ’(z )

for

where represents the interior and the latter condition

derives from considering the consequence of staying in mode

± for a short period of time while zc~~~ C1.) . During this

period v1(z) = 
~~~ + v~ (z) and hence vj(z) = v~ (z) and

v~~(z) = v~~(z) . Related to these conditions is the smoothness

condition that the right hand and left hand derivatives of

the potential function are equal on 
~
3(C

~~
) the boundary of

C . . . If we label this common derivative v! (z) and again
1J 1

• use the fact that v. (z) = K.  . + v. (z) on C. . we may write
1 1] 3 iJ

(5.3) v ’ (z) = v~~(z) for z c

Applying these optimality conditions with a backward induction

argument y ields part of a su f f i c iency result. Details of such an argu-

ment appear in [7]. To be more explicit, suppose that is a

regular stationary policy and v0 and y~ satisfy the equations

( 3 . 2 )  to (3.5) and (5.1) to (5.3) . Then for any alternative

measurable policy ~ (not necessarily stationary)

(5.4) D(x,t,T) E(C(x ,t,T)} + E{v0[X(T)]IX (t) =x) ’ y0(T-t) +v0(x)

— 12 —
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(where E represents expectation with respect to policy ~P

with equality for 
~~~~

= 6% . It is clear that if cor’~iitions

are such that the second term on the left of (5.4) must be

O (T-t) then is optimal and is the optimal long

run average cost. It is somewhat peculiar that the main

obstacle in establishing the optimality of (P~ lies in the

possibility of a better non—stationary 6~~ for which v0(X(T))

may occasionally be very large, a possibility that is intuitively

associated only with poor policies.

If and p 2 are both negative, it is clear that

E{v0[X(T)J !X(T)=x}=O(l) and a candidate stationary policy

~~ satisfying the optimality conditions 5.1 to 5.3 will

be optimal . If p1 > 0 it is easy to see that

is optimal among the class of regular stationary alternatives.

For a regular alternative which uses only mode 2 when Z(t)

is large, E{v0fX(T)JX (t) x} = 0(1) . On the other hand ,

for a regular alternative which allows one to stay in mode

1 when Z ( t )  is large , y =

To establish optimality among all measurable alternatives

when p1 > 0 is more difficult. In Section 8 a proof is

outlined for the linear holding cost case. That proof can

be generalized somewhat but a clear understanding seems to

require a different approach.

— 13 —
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6. The case of one transient mode

Our general approach will be to consider some simple

policies and to catalog those parameters

K12 and K21 for which such policies satisfy the optimality

conditions. We shall pay special attention to the conditions

(5.1) and (5.3).

To avoid undue attention to fussy details we shall assume

that at least one mean, say p2 , is negative, that h(z) > 0

for z > 0 and that for large z , h(z) is large enough

to make the continued use of a mode with positive mean pro-

hibitive. We shall be more explicit about this last conditir’n

shortly.

Let

(6.1) 8. = c. + I.
1 1 1

where Ii is the weighted average of h

—2 1i . ,~~ 2 (p . / a . 2 )w
(6.2) Ii a 2  J 

e 1 1 h (w)dw , if 0
1

Then is the long run average cost corresponding to the

exclusive use of mode i if < 0 . If > 0 , the

long run average cost would be at least c~ + lini inf
~~~~ 

h(z) .

— 1 4 —  
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Thus combining al l of our condit ions , we shall hereafter

• assume

p2 < 0

H1: h(O) = 0 and h(z) > 0 for z > 0

azH2: h(z) = o(e ) as z -
~ ~ for a > 0

• 113: h(z) is continuous

• H4: lu inf
~ 

h(z) > max(12,12 +c 2—c1)

Assumpt ion 114 states tha t the average holding cost in mode 2

is less than that for large z . Further if p1 > 0 , using

mode 1 would lead to an average cost which would exceed

c2 + 12 , that of using mode 2 exclusively. If both p1

and p2 are negative we shall find it convenient to relabel

the subscripts so that

H5: 1101
2 

> 1202
2 if p1, p2 <

assuming for minor convenience that eciuality does not obtain.

Note that under these assumptions , 1± > 0 for p~ < 0

and that in principle we allow C1 < 0

The simplest policy is that where one mode is transient.

By this we mean that the policy is such that after shifting

from that mode , it is never revisited. In particular we shall

assume that mode 1 is transient and hence y = 82 = c~ + 12

Theorem 6.1. The optimality conditions ( 5 . 1 )  and ( 5 . 3 )  are

satisfied for a transient policy with C 11 = ( O ,b ) ,  and

— 1 5 -
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= 82 ~~1

(6.3) C1 
— c2 < I2(l~ al

2/a2
2)

and

• (6.4) C1 
— C

2 
> 12 — 

~~~~. 
(i.e., 81 > 82) if p 1 < 0

and

(6.5) K = K 12 + K 21 > L

for some positive L depending on p1,p 2,a1
2,ci2

2, c1,c2 and

h . The optimality condition (5.2) is satisfied for the linear

holding cost h(z) = c0z

Proof: We shall defer the proof of the last sentence till

the next section , and we shall f i rs t  treat

Case A: 0

Let g ( z )  = f1 (z) 
— f 2 (z)  where f 1 and f 2 are the

• special solutions of (3.2) represented by f1 (0) = f 2 ( 0) = 0

z
2 2( ~~ 

2)( —z)(6.6) f~~(z) = e 1 1 [y—c 1—h (w) Jdw

— 16 —
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2
—2 2 ( p 2/a 2 ) (w—z)( 6 . 7 )  f~~( z )  = e [y—c 2—h (w)]dw

and i f  p1~~~ O

y—c —2 (p /a 2)z
(6.8) g’(z) = f~~(z) — f ~~(z) = 

1 (l—e 1 1
p1

— 

Z 

e
2
~~ 1/0l

2 ) (W
~

Z ) h ( w ) d w

— 

~~~~~~~ 
— 

2 (e
2
~~2~

/02
2) 

~
‘
~~~~h(w)dw

If p1 = 0 , the first term on the right must be replaced by

2z(y—c1)/a1
2 

. Since g’(O) = 0 and (6.3) implies

g”(O) = 2[a~
2(i—c 1)—a

2I2] 
> 0 , g’(z) is positive for

small positive z . On the other hand H4 implies that

as z -
~ ~ , f~~(z) becomes negative and f~~(z) becomes

positive. Hence g’ (z) becomes negative and there is a

positive b > 0 which is the minimum positive root of

g’(z) = 0 . Let

(6.9) L = g(b) j

b 
g’(z)dz > 0

— 1.7 —
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We shall now show that the potential function for C11 = [0 ,b)

and C12 [b ,~ ) will satisfy conditions (5.1) and (5.3) . Let

v2(z) f2(z) + 
~2 and let v1(z) = f1(z) + for

• 0 < z < b and v1(z) = v2(z) +K 12 for z > b . Then v is our

potential function (except for an additive constant) provided

v1(b) = v2(b) + K12 or 
~2 

— 

~l 
= L - K12 . Since

• g ’(z) > 0 for 0 < z < b , v1 
— v2 attains its minimum

of 
~l 

— 

~2 ~
<12 — L at z = 0 , (6.5) implies (5.1).

• Since g ’(b) = 0 , the smoothness condition (5.3) is satisfied .

2 2Note that if we increase C1 so that c1 
- c2 

-

~~ 
12

(1_a
l /02

• g ’ ( z )  decreases and the corresponding values of b and L

approach zero monotonically.

Case B: p2 < 0 , < 0

While the sign of g” (O) is determined to be positive

with the same argument as in Case A , the sign of g ’(z) for

large z is that of (81—y)/~1 
= (8

1
— 8

2
)/ p

1 
since

y—c 1 —2(p1/c~1
2)z I~ —2(p

1/cr1
2)z

f’(z) = [l—e ] + — e1 p1 p
1

2 ~ 
2(1.11/01

2) (w—z)
~~~~~~~~~~~~~~ ~ e h (w)dw .
a~~ J

• 1 z

Hence (6.4), wh ich is a natural requirement for mode 1 to be

transient, implies that the sign of g ’(z) is negative for

— 18 —
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large z . The remainder of the argument in Case A applies

equally well to Case B.

Thus as we promised we have proved all but the last

sentence of Theorem ~.l. 0

It follows from this proof that as c1 increases so that

c1 
- c2 approaches 12 ( 1_ a l /0 2 ) , g ’(z) decreases and

the Corresponding values of b and L approach zero mono-

tonically. Thus one would anticipate that larger values of

c1 would yield optimal policies with C
11 

null. In Case B

where p1 < 0 , as C1 decreases so that c1 
- c2 approaches

12 - I~ , b and L increase monotoniCally. (The limiting

value of b may be +~~ . This is the case for linear holding

cost as is easily derived from the analysis that follows shortly.)

As c1 decreases below this level , a transient policy to be

optimal clearly would have to use mode 2 as the transient

mode. In the next section we shall show that this is not the

case, i.e., that the optimal policy has no transient mode when

C
1 
+ < C

2 
+ 12

The particular values of K12 and K 21 which yield a

given sum K have no influence on ~ for a non—transient

two mode policy. This is more or less obvious since any such

policy which involves more than one switch pays K for every

pair of ~witches . For policies with a transient mode , in—

creasing K does not affect y . On the other hand , decreasing

K below L leads to the possible optimality of non-transient

policies.

— [9 — 
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In summary, for given h sa t i s fy ing  the assumpt ions

H1 
- H

5 , and for essentially the entire class of

the set of c1,c21K 12,K21 have been classified

according to values for which our special transient policy

satisfies the optimality conditions.

If the holding Cost is linear h(z) = c0z , c~ > 0 , and

1 * 
—2(p 1/a1

2)z
f .~ ( z )  = — [y— (c 1+I, ) J [ l— e J — for p1 ~ 0P1 11i

2(y—c1) c0 2
f~~(z) = 

2 

—
~~~~~ for p1 0

01 
01

while *

f~ (z) = [—c 0z+(y—~ 2) 1/112

Thus g ” is strictly monotone decreasing in both cases A and B

and hence the positive solution b of g’(z) = 0 is unique.

Moreover the conditions (6.3), (6.4) and (11.5) translate to

(6.3’) c1 
— c2 + c0(a2

2—a1
2)/2p 2 < 0

c 02 a~
2

(6 . 4 ’ )  c1 — c2 + (— — —) > 0 if p1 < 0
P

and

( f l , 5 ’)  11 2 
< 1.11 < 0 .

* The term Y - 8 2 i~ zero here and is inserted as a covenience
for reference in the more general case of Section 7 where it appears
as a negative quantity .

— 20 —



• - - -.—~~~ — r-— ~~~~~~~~~~~~~~~~ — -  - 
~~~~

. 
~~~~~~~ •

7. Two non-transient modes

The next simplest type of policy to consider is that

where C11 = [0 ,b) arid = (a,co) where 0 < a < b

For such a policy neither mode is transient and both modes

will recur infinitely often in the long run . We shall treat

three cases, including two in parallel with those of

Section 6. We shall determine conditions under which such policies

satisfy the optimality conditions (5.1) and (5.3) and show that

(5.2) is also satisfied in the case of linear holding cost. These

results provide a complete classification of optimal policies

in the linear case.

Theorem 7.1 The optimality conditions (5.1) and (5.3) are

satisfied for a policy with C11 = [0,b) and C22 = (a,
co) with

0 < a < b for appropriate y < 82 in the following cases.

Case A: p1 > 0  and 0 < K = K 12 + K 21 < L

Case B: p1 < 0 , c1—c2 > 1~~ I] , and 0 < K < K12 + K21 < L

Case C: p1 < 0 , c1—c2 < I2~
I1 ~~~~~~~~~ 

0 < K < K12 + K21 < L~

for some appropriate L0 depending on c1, c2, p1, p 2, o~
2

and 02 . If the holding cost is linear, h(z) = c0z , L0 =

and the opt imality condition (5.2) is satisfied in all three cases.

Proof: We shall treat the f i rs t  two cases in parallel

with those of Section 6. Our proof of the last sentence will

be adequate to cover the last sentence of Theorem 6.1. In

Section 6 we took the precaution of using y in place of

82 in our formulae even though they were equal . As a result

— 21 - 
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equations (6.6) to (6.8) may still be applied .

Hence it is clear that

~g ’(z) 
= ~~~~_ [l-e

2 1/a1 z
1 - 

1 
~

(7.1)

3 ‘(z) 2z 1
3y 2 if 1l i = 0

1

and that 3g ’ (z)/3y > 0 . If we regard g ’ (z) as a

function of z and y , say g1(z,y) then we are concerned

with how the values of z for which g1(z,y) = 0 change as

‘I’ decreases from y = . At ‘r = 8
2 

these are the

values 0 and b of the cases treated in Theorem 6.1. As

~ decreases, one root z1(y) is monotonically increasing

from 0 and the next positive root 22(1) is monotonically

decreasing from b until they meet at a common value z0
corresponding to a value 10 of 1 and such that

g1(z0,y 0) 3g1(z0,y 0)/~ z = 0 . These roots z1(y) and

z2 (y) represent values of a and b for which the

optimality conditions (5.1) and (5.3) are satisfied with

K12 and K21 values for which K K12 + K21 =f2g1(z~1)dz

is monotonically decreasing from L to 0 as ‘r 
1 

decreases

from 82 to . The case where z1 = z2 z0 and

— 2 2 — 
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= i~ corresponds to the limiting case of zero switching

costs. This disposes of Cases A and B of Theorem 7.1

Now let us treat

Case C: p1 < 0 , c1 
— C

2 
< 12 

— Ii

First let c1 decrease in Case B so that c1-c2 
-

~ 
12

_ I
l

or equivalently 8] decreases toward 82 . Then, in the

transient case where I = C
2 
+ 12 , g ’(z) increases

monotonically to a limiting function g~~(z) which vanishes

at z = 0 and is positive for positive z close to 0

The corresponding values of b and L increase inonotonically

* *to possibly infinite limits b and L

As c1 passes below 12 - I~ + c2 , (Case C), 81 de-

creases below 82 and policies where mode 1 is transient

can no longer be optimal . Moreover y < 81 < 82 and 8 2 -

is small. Then g ’ (0) = ( 8
2

— y )/ p
2 

< 0 and lim 2~~ g ’ (z) = —

But for moderately small positive values of z , g’(z) is

sufficiently close to the positive limit of the transient case

mentioned above that g’ (z) will be positive for some positive

z . Thus g’(z) has at least two positive roots, one of which

is close to zero and the first two of which can be labeled a

and b and correspond to the optimality conditions (5.1) and

(5.3) for some K fg ’(z)dz . As c1 and y - C
1 

dec r ease ,

g ’(z) decreases and K, a, and b will behave monotonically

until K reaches 0 and a and b come together as in the

discussion of cases A and B . For fixed c1, as y increases

to K increases to some limit L0 depending on c1, c2,

— 23 —
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The value of L0 depends upon g~~(z) which can be written

g~~(z) = ~1
1{I1-I1 (z) 

- p~~ {I2-I2(z)

where 2—2p . 2(p./o . ) (w—z)
11(z )  = ~ e 1 1 h(w)dw , i=1,2,

are exponentially weighted averages of h(w) for w > z . Let

us now consider the case where c1 is decreased by 6

from 12 
- I~ + c2 and y — c1 stays fixed at 82 

— c1

Then g ’(z) = g~~(z) + 6/p 2 and for 6 sufficiently small

g ’ (z) = 0 has a root a0 > 0 close to 0 . Let b0 be the

second positive root if there is one and otherwise . Then
b

• 
L
0 

= 

a~

0 g’(z)dz . If g~,(z) is strictly rnonotonically increasing ,

L0 = and b0 = for all 6 . Otherwise L0 will

vanish for c1 sufficiently small. If the holding cost is

linear , h ( z) = c
0z , then g~ (z) = c0Z(P 1

1_ P
;
1
) and I ) =

for all c1 < I2~
I1 +

It remains only to prove that the optimality condition (‘~.2)

is satisfied in all three cases if h(z) = c0z . Our proof

will also apply to Theorem 6.1. We begin with some general

considerations and specialize to the l inear case. Let us apply

condition ( 5 . 2 )  to the policy C11 = (0 ,b) and C22 
= (a ,°’)

in which case v~~( z) = f~~(z )  on C12 and v~~( z )  = f {( z )  on C21
Both f~~(z )  and f~~(z )  sat isfy (3 . 2 )  and hence

— 2 4 —  
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c~ + p~ f~ ( z)  + —i—- f~ ( z )  = c
~ 

+ ~~ V ( z )  + —4-- f~ ( z )

Substituting in (5.2) we have

a~~
2

(7 .3)  p
1g ’(z) + —

~~--. g ” ( z )  < 0 for  z > b

and
202(7.3’) p 2g ’ (z) + 

~~~ 
g”(z) > 0 for z < a

where (7.3’) disappears in the transient case of Section 6.

If g’(z) < 0 and g”(z) > 0 for z < a (7.3’) applies.

If g ’(z) < 0 and g”(z) < 0 for z > b and p1 > 0 (7.3)

applies.

We now proceed to the special case of h(z) = c0z to

show that both (7.3) and (7.3’) apply. As we noted in Section

t 6 , g” (z) is monotone decreasing in both cases A arid B

It is easily seen to be monotone in Case C also and herce

must be monotone decreasing with a root between a and b

Hence (7.3’) applies with strict inequality . On the other

2 ,, . . •hand p1g ’ ÷ 01 g /2 is linear in z with slope

< 0 and hence it suf f ices  to estabiish ( 7 . 3 )

for z = b . But g ’ (b ) = 0 and g ” (b)  < 0 and thus (7.3)

applies with strict inequality. Li

— 25 —
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Let us review the current status . For the linear holding

cost we have shown that the simple policies of Sections 6

and 7 apply to a large set of possible parameter values.

What have we omitted? To minimize discussion we have avoided

“boundary ” cases where a or b or K are zero or where

= 82 when p1 < 0 or when p1 = p
2 

, but these cases

F are not particularly deep . The case p1 < p 2 < 0 was covered
— in the case p 2 < p1 < 0 by interchanging subscripts. (In

the non-linear case, the condition p2 < p
1 

< 0 is replaced

by (H.5)). Considering the fact that as c1 increases to

c2 + 12
(1_a

l /02 ) , b and L -
~ 0 in the transient case,

if one could establish the optimality , i.e., the sufficiency

of the optimality conditions, one would be led to the con-

clusion that when c1 > c2 + 12(10 2 /02 ) an optimal policy

requires a null C11 . Thus we have shown that the policies

of Sections 6 and 7 are the class of optimal policies for all

parameter values involving linear holding costs, provided

we can establish the sufficiency of the optimality conditions

(5.1) to (5.3). This is accomplished in Section 8.

What is the situation for the non-linear case? If

g~~(z) is not monotone increasing , we must seek more complex

policies for some parameter values. If g~~(z) is strictly

-

• monotone increasing, it is possible that the simple policies

will suffice if we could establish ( 7 . 3 )  and ( 7 . 3 ’ )  . In

Section 9 we present an example involving a non—monotone

• holding cost where an optimal policy requires C22 = [0 ,b)tj(b 2 ,~~ )

— 2 6 —
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while C11 
= (a1,a2) where 0 a1 < b

1 
b
2 

< a2 . One may

conjecture that the simple “two point” policies of Sections 6

and 7 contain all optimal policies if h(z) is monotone and

approaches infinity as z -* . However that conjecture

is not valid in general . Computations were carried Out for

the case where p1 
= — .2 , o~

2 
= 0.1, c1 

= 0.23 , p
2 

= -1.0,

02 = 1.0 , c2 
= 0.0, and I = 0.46 while h(z) is con-

structed with 3 line segments which have slope 1 for 0 < z < 0.8,

0.1 for 0 . 8  < z < 2.0 and 20.0 for z > 2.0 . Then

g ’(z) < 0 except in the interval (0.04,0 . 8 5)  but

+ a1
2g”(z)/2 is positive in (1.722 ,2.025). Thus

condition 7.2 fails for the only candidate for a “two-point”

optimal policy . Note that in this example a~
2Il = 2 .425,

0 212 = 0.591, and 0.23 = C
1

— c
2 

< I~—I~ = 0.349. Thus

we are in Case C but g~~(z) is not monotonic . It attains

a local maximum of 1.967 at z = 0.767 but starts to increase

again after z = 1.137.

8. Sufficiency of the Optirnality Conditions

In Section 5 we found it relatively easy to establish the

optimality of a candidate stationary policy cP0 satisfying

the optimality conditions (5.1) to (5.3) with 1 = 1
~~ 

and

v = V
0 

when this policy is compared with other regular

stationary policies and, in the case where p1 < 0 , when it is
compared with all measurable policies. If > 0 , another

• proof is required to establish opt imal i ty  in the class of all

— 27 —
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measurable policies. We shall outline such a proof for the

special case of linear holding cost. Since the proof is

clumsy and seems to have limited prospects for generalization

a d  does not appear to confront the main issues and conditions

• which should be illuminated by an insightful proof our ’s

will be informal and sketchy .

The main points of our proof consist of showing first

that given an arbitrary policy one can do almost as well

over a long time period T with a policy that applies mode

2 for a substantial time period whenever Z(t) exceeds Tr

for some r between .5 and 1 . Second , such a restricted

policy can do better than 10 over (O,T) only if

T 1Ev0(X(T) ] is not small , in which case the expected holding

cost over the interval (T_T r+6,T) with r + 6 < 1 is so

substantial that the average expected cost over (0,T_T1
~~
6)

is less than what is attainable and a contradication results.

Let 6 > 0 and 1 + 36 < 2r < 2r + 46 < 2 . We shall

use the fact that for 0 < t < S < T and any n > 0

P { su~ r W~ (s)-W 1(t) I > kT6~~~
’2} = o(T~

”) as T -
~~

i,
~ 
t—s I

Given any policy ~~ with  state process X ( t )  , we define

a modified version 
~ T 

over the interval (0,T) which

— 28 —
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follows ~ until Z(t) > Tr at which time mode 2 is applied

for a time interval of length -T’/2p 2 after which one matches

• the modes which would have been used had been followed .

As soon as the modified queue length ZT(t) > Tr once again ,

one repeats mode 2 for another time interval length -T’~/2p 2

Between the era consisting of the time from the first arrival to

Tr and the next arrival of ZT(t) to 0 , the time duration

in mode 2 has been increased by an amount because of

• our modification. At the end of the era ZT(t) < Z ( t )

Succeeding eras from the arrivals to Tr followed by the

returns to 0 involve increased durations in mode 2 of

T 2 , T 3, ”

The modified policy may lead to certain increases of cost.

That due to additional switching is O(Tl-r) since there are

at most O (Tl-r) additional switches of mode. The additional

cost due to the di f ference in c1 is 0(T) . The difference

in holding cost is bounded as follows. Let t represent the

current value at time t of the increased time duration in

mode 2 in the current or i-th era. Then

* ~~ *1/2 *

ZT(t) < Z(t) + (p 2—p 1)t +T (kt +1) for 0 < t < T
i
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with probability exceeding l_O (T n) . But -k1t + k2t
*l//2

attains a maximum value of k2
2/4k1 and hence the additional

cost due to the difference in holding cost is with large

• 1+26probability 0(T

None of these extra costs are incurred if Z(t) < Tr

for 0 < t < T . If Z(t) > Tr for some t < T , then the

holding cost using ~? is very likely to exceed T2r 6 which

is large compared with the possible additional expense incurred

by using 
~~T 

• It follows that the expected average Cost

of over (0,T) exceeds that of by at most a

relatively small amount.

If is not optimal then there is an infimum ~ of

the expected average costs over long time intervals where

-r < . Then there is a sequence of times T
~ 

and policies

so that the T~
’EC~~(x1 0~T~ ) + . In that case

(5.4) implies that u r n  T
~
1Evo EX (T~

)] > 10 
- -r and hence

u rn T~
1E [Z .2 (Ti)] > —2p 2(y0—y)/c0 since v0(x) ~ —c0z

2/2p 2 as

z . Moreover the same inequality applies for the re-

stricted policy ~~ T Now let T. = T. - ~~~~~ . With

very large probability

ZT (Ti t) > (z~~(T~
)_p

1
t_T

l~
+r/2) 0 < ~ < T~~~~

and ZT (Tj) < • Then if > 0 , the holding cost

— 3 0 —
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over (T
~~

, T~
) exceeds (2P l )

~~
’{z T (T i

)_ T
i

6
~~~

’2 ] }  and
~ 6+r/2 2if p1 = 0 , it exceeds [ZT (T~

)_T
~ 

] . It follows
1 —

that the ezpected holding cost over (T
~
,T
~
) is a substantial

multiple of T1 . But then

TI~ T~
1ECT (x,0,T.) < y

which contradicts our definition of y

9. Computation of Optimal Solutions

The number of essentially independent parameters for

this problem is so great that it is unfeasible to tabulate

the solutions even in the linear case. It is preferable to

use a numerical method for computing solutions for specific

values of the parameters . There are many numerical approaches

that can be used including even backward induction. Consistent

with the general analytic approach of this paper are several

methods which apply the smoothness condition ( 5 . 3 )

For example in the case of the linear holding cost, one

approach that was used successfully is described below for

~ 0 . If one anticipates the solution of the form

C11 = [0,b) and C22 = (a,~~) , then

— 31 —
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—c 0z -y—(c1+11 

) —2 (p1/c,1 )z
v ’(z) = — -+- ( l—ep

1 
p1

1 c0z• v~ (z) = 
— Ly— (c~,+I,)1 — —p2

When the switching costs K12 = K 21 = 0 , this solution de-

generates to the form where a = b = , v~ (z0) = v~ (z0)

and v~ (z0) = v~ (z0
) . These last two equations are easily

solved for y and z0 . As K12 + K21 increases, the

optimal r , a and b Change monotonically and the following

four equations

v2(a) 
= v1(a) +K 21 , v1(b) = v2(b) +K 12

v~ (a) = v~ (a) , v~ (b) = v~ (b)

involve the unknowns ‘
~ 

, a , b , and two constants of in-

tegration , one of which can be arbitrarily set, say by the

equation v1(0) = 0 . This leaves four equations in four

-i unknowns which can be solved iteratively by Newton ’s method (using

• z 0 for an initial approximation to a and b) . One may check

in advance to see whether one is in the transient case by checking the

inequal ities (6.3) and (6.4) and determining b and L for

r ~2 c2 + I 2
An al ternative approach was used for the following example

— 3 2 —



where the holding cost was non-linear , i.e.,

h(z) z + 2.5[(z
2+2z+2)e

_Z
_2).

This example was constructed to illustrate a solution of

the form C11 
= (a 19 a 2 ) , C22 = [0,b1)~~(b2,°o) where

a1 
< b1 

< b2 
< a2 . The function h(z) is always positive

but af ter a br ief rise near z = 0 , dips close to zero

at z = 3.31 and then rises again, behaving asymptotically

like z - 5 as z -. ~ and like z near z = 0 . With the

parameters p1 
= - .5 , p

2 —1 , a~
2 

= .81 0
2 

= .49 ,

C
1 

= .9 and c2 = 1.0 and K = K12 + K21 = .03 , some

preliminary calculations suggested that for z close to

zero and z close to ~ , the approximate linearity and

the choice of parameters would make mode 2 preferable. However

for z close to 3 the low holding cost suggested that it would

be desirable to let z decrease slowly (i.e., to use mode 1).

The approach used was to select an approximation to a1,

a2,b11b2 and to compute the potential function using the method

described at the end of Section 4 .  Then vj ( z )  - v~~( z )  was evaluated

at a11b 1,b2 and a2 . Then a1, b1, b2 and a2 were changed

to reduce Iv~ (z) 
— v~ (z) at these four points. A positive

value of v~ (z) — v~ (z) at z = a1 and z = “2 and

a negative value at z b1 and z = b
2 

suggests in-
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creasing these values of a
~ 

and b. . The value of Vj(Z) — v~~(z)

at each of these points depends mainly on that point and

after starting gingerly with small changes of a1, b1, b2,

a2 in the appropriate directions, subsequent appropriate

changes leads to rapid convergence to a1 = .7786 , b
1 

= 1.4973,

= 3.6673 and b2 = 4.5185 . The resulting value of

y = 1.206496 is a rather slight improvement in effect over

the value y = 1.206736 for our choice of the initial

approximation a1 = 1 , b
1 = 2 , b

2 
= 3 , a2 

= 4

Additional computation confirmed that the optimality

conditions (5.1) and (5.2) are satisfied .
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